
Panoply vs Amazon Redshift

Benchmarking
Tableau Performance

Table of Contents

Faster Visualizations from Data Warehouses...3

The Plan..3

The Criteria..3

Learning the Data: The Panoply Machine-Learning Approach...4

Performance Testing..4

Panoply Optimizations: Keys, Compression, and Queries..4

The Results..6

What We Learned...8

Faster Visualizations from Data
Warehouses

Harnessing big data insights is an integral part of

modern business analysis. Now that integration and

consumption of big data have hit the mainstream, the

new hurdle for business intelligence visualization is

improving rendering performance and visualization

speed. Finding data management tools that can reduce

the time to visualization is the next great challenge to

business intelligence’s agility and responsiveness.

Tableau, a leader in visual analytics platforms,

approached Panoply, the world’s only Smart Data

Warehouse, to determine how it would optimize and

manage dashboard runtimes and query requests

submitted to a dataset through Tableau’s Business

Intelligence (BI) Tool. Once determined, these same

testing criteria were utilized in queries against

Amazon’s Redshift Data Warehouse.

The performance study was managed by Tableau.

The database used was at baseline: no performance

enhancements like compression, caching, sort

keys, distribution keys, etc. were applied to either

warehouse dataset.

The test would allow IT professionals, database

architects, data scientists and others to gain insights

about the performance and optimization capabilities

of the providers, and give business users information

on the rendering speed, ongoing optimization

capabilities, and machine learning capabilities of each

data warehouse. Top line performance is a key factor

in tool selection, as ongoing optimization by data

scientists and engineers requires time and expertise.

Panoply’s platform-based automatic optimization

eliminates the need for ongoing manual optimizations,

and the test assisted study managers in assigning

metrics to the efficiencies these optimizations created.

We’ll examine the testing process, analyze the results

and explore key takeaways for the improvement of

business intelligence practices utilizing Panoply and

Redshift.

The Plan

Tableau’s goal is always to get the best, most useful

visualization to the user in the fastest response time.

The performance test was designed for the Tableau

program to execute a set of dashboards, which in turn

would generate queries against both data warehouses.

Nothing was changed in either dashboard between

tests except the connection string: the data source was

either a direct connection to Redshift or an “indirect”

connection to Redshift through the Panoply platform.

This testing mechanism simulated a user’s total

reliance on the tool to auto-generate a query – not

the user’s ability to write or understand SQL. This

simulation most closely matches the typical Tableau

user experience of creating self-service visualizations

utilizing drag-and-drop operations, not complex code.

No additional steps were taken to optimize any of the

queries used. The sole responsibility for optimizing

queries for fast execution rested with each data

warehouse and the user in charge of optimization,

usually an engineer within the IT department.

The Criteria

Devising criteria that were both robust and realistic

was an important part of the performance testing

framework. The following parameters were used:

	 •	 Synthetic TPC-DS datasets were leveraged for 	

		 testing

	 •	 Datasets ranged between 4GB to 200GB

	 •	 The primary fact table contained between 		

		 180M to 3B rows of data

	 •	 To achieve parity, the same data was loaded 	

		 into both Panoply and Redshift

Once the data was loaded into each data warehouse, it

was put through a series of tests with results reported

by Tableau. Tableau’s benchmark dashboards were

used throughout the testing for both Panoply and

Redshift query results. The results below are based on

several rounds of testing and demonstrate optimization

results via increasing or decreasing dashboard render

times. Both dashboard and individual query execution

times were tracked. However, because a user’s

perception of performance is tied to how quickly the

dashboard they run completes the rendering process,

we focused on the rendering time of the visualizations

themselves.

Learning the Data: The Panoply
Machine-Learning Approach

As a Smart Data Warehouse, Panoply’s learning

process starts when the data is ingested and the first

query is executed. Once the analyst begins to query

the ingested data, Panoply begins its work. This

learning and knowledge gathering process is critical

and contributes to better performance and enhanced

decision-making processes within the platform.

Panoply is designed to optimize automatically based

upon the usage patterns of the analyst or data

scientist initiating the queries. In the test, these

optimizations were performed within Panoply’s

automated platform by a proprietary set of machine

learning algorithms, which learned the business logic

and adjusted for optimal performance. Some of the

automated optimizations included data compression,

distribution key creation, and sort key creation.

Performance Testing

The importance of Panoply’s ability to learn the data

showed its significance during the performance

testing. The tests were designed as straight “apples-

to-apples” comparisons. To ensure comparison

equivalency was possible, special care was taken to

create a uniform size and composition of the Redshift

cluster backing Panoply, and to that of the standalone

“vanilla” Redshift cluster. The first baseline run

column was labeled as ‘Redshift-Baseline’ or ‘Panoply-

Baseline’. Each row in the chart displayed a different

dashboard executing one or more queries. This testing

methodology was performed with Panoply as well as

the vanilla Redshift.

During the test period, three batches of data were

run against a Panoply Smart Data Warehouse and

an Amazon Redshift Warehouse. The performance

was sampled in each batch with changing intervals

to identify performance improvements. The data

warehouse and all optimizations were cleared as each

new batch of data was introduced into the system.

With these testing parameters in place, Panoply

immediately began to “learn the data” and identify

helpful usage patterns upon initial analysis. Based

on the patterns identified, Panoply then determined

which optimizations to make and to what extent they

should be implemented.

Since all optimizations are managed within Panoply,

the platform can adapt to a variety of use cases.

The more frequently the data is queried, the more

deeply the platform understands the data and the

more precisely the machine intelligence will adapt to

improve performance.

Panoply Optimizations: Keys,
Compression, & Queries in Data Learning

Panoply applies distribution and sort key setting,

compression, query, and view materialization

optimizations during its data learning process.

Distribution & Sort Keys

The distribution key is essential to optimization

because it directly impacts performance, and defines

how data is the spread across nodes. Panoply has

automated the process of designating a distribution

key based on ”learned data”.

The spread of data within a node is determined by the

sort key. Panoply can intelligently select the correct

column as a sort key. In Redshift, sort keys allow for

less data scanning when the user utilizes WHERE

clauses in a query. In Tableau, a user-defined filter

which is “covered” by a sort key in Redshift generally

enhances performance significantly.

Redshift does not utilize constraints on the primary or

foreign keys – these are informational only. Panoply,

however, can add constraints through its internal

processing when it is being utilized by other tools in

their query building process. There are two options for

defining constraints within a Panoply database. One

is setting them by user via Panoply UI. The other is to

allow Panoply’s algorithm to identify fields with id/id_

pattern values. Based upon these results, Panoply will

define the field(s) as primary keys/foreign keys (PK/FK).

Compression

Compression is an effective method of reducing

the size of stored data. By reducing the data size,

query performance can increase due to reductions

in disk I/O. The more data used, the more important

compression becomes. Redshift selects the

compression configuration during the initial copying

of the database, and then continues compression of

established configuration.

Panoply also handles compression on the initial copy,

but then continues to monitors the data over time,

adjusting the compression configuration as needed,

particularly after changes or introductions of new data

segments. By periodically optimizing via compression,

Panoply improves the overall responsiveness of the

dataset to rendering and visualization requests.

Queries

Panoply keeps track of the user’s queries, specifically

their usage of tables in joins and fields in ON clauses.

Based upon this information, Panoply defines the

distribution key and style appropriate for each table

and generally for the database. This allows future

queries to better leverage the distribution keys and

more easily access data from different nodes. For

example, a field that is often used when joining a

certain table would be a statistically strong candidate

for a distribution key.

In the case of query caching, Panoply can dynamically

define queries to cache. Every query executed on top

of Panoply goes through a proxy server. The query

is analyzed for metadata purposes (execution time,

row count, number of executions, etc.), and a learning

algorithm evaluates the aggregated statistics and

makes the decision to cache the query or remove it

from cache. Panoply uses layers of memory throughout

its infrastructure, allowing it to dynamically allocate

the cached results between database storage and the

proxy external memory.

View Materialization

Query information is combined with an analysis of

the query patterns Panoply observes during testing

to optimize for view materialization. Panoply takes

advantage of both cached results and materialized

views, and decides to cache all or a portion of the

queries in memory based upon user statistics from

queries. By analyzing usage, runtime and frequency,

Panoply decides which queries or views should be

materialized or cached.

Panoply intelligently decides if queries are completely

cached in memory, segregated or if an aggregated

query is saved. In case of a segregated query, Panoply

enabled Tableau to pull it from memory instead of

pulling the data entirely from the data warehouse,

which allows for a significantly faster return.

This decision made a notable difference in query

optimization. Aggregate results were materialized

using the following methods:

	 •	 Materialize Views – The results of the view are 	

		 calculated and saved as tables (these are

		 refreshed every time new data enters the 		

		 tables the view depends upon).

	 •	 Materialize Queries (Cached Results) – Panoply 	

		 re-calculates frequently used queries and saves 	

		 the result as a table. By using Panoply’s proxy, 	

		 whenever the user is querying the same query 	

		 they can identify it and query the materialized 	

		 result automatically.

As datasets continue to grow and segments of data

are repeated, optimization becomes much more

important. Left unoptimized, growing datasets would

cause performance slowdowns and impede data

visualizations in Tableau. Panoply’s platform-based

optimizations helps users avoid this issue.

The Results

Tableau Comparison – Dashboard 180M Rows

As shown in Figure 1 below, Panoply progressively

improved in comparison to an unoptimized Redshift.

The original normalized schema was used, so all the

complex joins were being handled directly by Panoply.

The organization of the tables, columns and associated

attributes were being managed within Panoply

while eliminating the need for data redundancy and

increasing data integrity.

Round 1

Optimizations consisted of data compressions,

showing a decrease in dashboard runtime and

adjusting the Panoply performance to that of the AWS

performance. Compression was an effective method of

reducing the size of the stored data. By reducing the

size of the data, the query performance had a noted

increase due to reductions in disk I/O.

Round 2

Optimizations consisted of changing distribution style

keys and setting sort keys and constraints, producing

another decrease in dashboard runtimes. Panoply

automated distribution style by systematically

determining the best method to dispense rows of

data based on the numbers of joins and aggregations

between rows of data. It ensured the most effective

constraints were implemented – ones that did

not impede overall performance by becoming too

burdensome.

Round 3

Optimizations consisted of query caching showing

a larger decrease in dashboard runtimes. Panoply

intelligently decided if queries were completely cached

in memory, segregated or aggregated. In the case of a

segregated query, instead of pulling the data entirely

from the data warehouse, Panoply enabled Tableau to

pull it from memory, which is significantly faster. This

decision made a noticeable difference in optimization.

Each dashboard presented a unique set of queries to

be executed against each data warehouse. Redshift

execution time averaged around twenty seconds.

Panoply ranged from thirteen seconds to as high as

eighty seconds. The largest decrease of 89% is shown

in the Sales and Profit by State dashboard. When

comparing all the results against a non-optimized

vanilla Redshift in Dashboard 180M, Panoply’s average

query execution runtime was 45% lower than the

Redshift baseline. Comparing the runtime of the “Big

Dashboard”, Panoply achieved a decrease of 74% in its

final query execution run.

Figure 1: Dashboard Load Time - 180M Rows

Figure 2: Dashboard Load Time - 380M Rows

Tableau Comparison – Dashboard 380M Rows

The design of the schema played an important role

in what happened next. Consider the results of the

second (380M row) run. In this test, Redshift was

optimized by using a denormalized schema to minimize

joins. Redshift was given an “advantage” of using a

denormalized schema while Panoply was “burdened”

with an unoptimized complex multidimensional

schema. In some cases, Panoply was still faster than

(unoptimized) Redshift, but in others, Redshift was

faster. The design of the schema contributed to

the results. The information that Tableau collected

was based on query results and execution for each

dashboard.

Figure 2 above reflects the challenges of the

optimization using a complex schema. Database design

plays a significant role in this process. Because of

the more complex schema (and therefore additional

joins), Panoply’s first baseline runs are two to four

times slower. However, by the end of the tests, and

despite facing a more challenging database design

Figure 3: Dashboard Load Time - 3B Rows

Panoply is a smart data warehouse that automates all 3 key aspects of the data analytics

stack: data collection & transformation (ETL), database storage management, and query

performance optimization. Panoply empowers anyone working with data analytics to

quickly gain actionable insights on their own—without the need of IT and Engineering.

Get your Free Trial at Panoply.io

hello@panoply.io www.panoply.io 188 King St. San Francisco, CA 94107

than Redshift, Panoply rendered visualizations two to

three times faster due to its ability to learn the data and

optimize based on its own platform-based algorithms.

Three billion rows of data was a substantial amount

of data to process, and there were table structure and

data layout variables that impacted load time. Tableau

took some time to render 360k rows, with rendering

performance dependent largely on the complexity of

the data and the simulated lack of sophistication by

the end user. As mentioned previously, the test was

designed to mimic an end user situation where the

operator was not experienced in building complex

queries or filters and instead relies solely on the tool

to complete the task. Most users will have filters in

place that would return far fewer than 360k rows of

data, decreasing both the query and rendering times.

Although the impact of the large dataset on Tableau’s

rendering time is a contributing factor, Panoply still

exceeded Redshift as shown in the Big Dashboard.

Income and Profit query improvements were small, at

eleven percent faster than Redshift. Results displayed

within the chart show progressive improvement in

comparison to the unoptimized baseline of Redshift.

The Sales and Profit by State query showed the most

significant decrease in load time at 95.6%. The overall

performance in Figure 3 above averages at 65% in

comparison to the baseline of Redshift.

What We Learned

A Panoply cluster in its raw form can start off with

performance metrics similar to a unoptimized Redshift

cluster. Gradually, however, the proprietary Panoply

algorithms begin to learn the data and act upon

the information derived from the queries. As these

processes run and the Panoply platform continues

to learn, the result is continuous performance

improvement. After two to three weeks of running

dashboards, Panoply reached an optimal runtime that

outperformed the unoptimized Redshift cluster by up

to 90%.

The conclusions we draw from viewing these results

is that data design, data configuration, and data

management tool selection can have a marked impact

on visualization rendering performance in Tableau.

Panoply’s platform-based machine learning algorithms

eliminate the difficult IT work of optimization and

configuration, streamlining data analysis for analysts

and data scientists and providing a faster, more agile

database response for all Tableau users.

https://platform.panoply.io/#/signup

