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Faster Visualizations from Data 
Warehouses

Harnessing big data insights is an integral part of 

modern business analysis. Now that integration and 

consumption of big data have hit the mainstream, the 

new hurdle for business intelligence visualization is 

improving rendering performance and visualization 

speed. Finding data management tools that can reduce 

the time to visualization is the next great challenge to 

business intelligence’s agility and responsiveness.

Tableau, a leader in visual analytics platforms, 

approached Panoply, the world’s only Smart Data 

Warehouse, to determine how it would optimize and 

manage dashboard runtimes and query requests 

submitted to a dataset through Tableau’s Business 

Intelligence (BI) Tool. Once determined, these same 

testing criteria were utilized in queries against 

Amazon’s Redshift Data Warehouse.

The performance study was managed by Tableau. 

The database used was at baseline: no performance 

enhancements like compression, caching, sort 

keys, distribution keys, etc. were applied to either 

warehouse dataset.

The test would allow IT professionals, database 

architects, data scientists and others to gain insights 

about the performance and optimization capabilities 

of the providers, and give business users information 

on the rendering speed, ongoing optimization 

capabilities, and machine learning capabilities of each 

data warehouse. Top line performance is a key factor 

in tool selection, as ongoing optimization by data 

scientists and engineers requires time and expertise. 

Panoply’s platform-based automatic optimization 

eliminates the need for ongoing manual optimizations, 

and the test assisted study managers in assigning 

metrics to the efficiencies these optimizations created. 

We’ll examine the testing process, analyze the results 

and explore key takeaways for the improvement of 

business intelligence practices utilizing Panoply and 

Redshift.

The Plan

Tableau’s goal is always to get the best, most useful 

visualization to the user in the fastest response time. 

The performance test was designed for the Tableau 

program to execute a set of dashboards, which in turn 

would generate queries against both data warehouses. 

Nothing was changed in either dashboard between 

tests except the connection string: the data source was 

either a direct connection to Redshift or an “indirect” 

connection to Redshift through the Panoply platform.

This testing mechanism simulated a user’s total 

reliance on the tool to auto-generate a query – not 

the user’s ability to write or understand SQL. This 

simulation most closely matches the typical Tableau 

user experience of creating self-service visualizations 

utilizing drag-and-drop operations, not complex code. 

No additional steps were taken to optimize any of the 

queries used. The sole responsibility for optimizing 

queries for fast execution rested with each data 

warehouse and the user in charge of optimization, 

usually an engineer within the IT department.

The Criteria

Devising criteria that were both robust and realistic 

was an important part of the performance testing 

framework. The following parameters were used:

	 •	 Synthetic TPC-DS datasets were leveraged for 	

		  testing

	 •	 Datasets ranged between 4GB to 200GB

	 •	 The primary fact table contained between 		

		  180M to 3B rows of data

	 •	 To achieve parity, the same data was loaded 	

		  into both Panoply and Redshift

Once the data was loaded into each data warehouse, it 

was put through a series of tests with results reported 

by Tableau. Tableau’s benchmark dashboards were 

used throughout the testing for both Panoply and 

Redshift query results. The results below are based on 

several rounds of testing and demonstrate optimization 

results via increasing or decreasing dashboard render 



times. Both dashboard and individual query execution 

times were tracked. However, because a user’s 

perception of performance is tied to how quickly the 

dashboard they run completes the rendering process, 

we focused on the rendering time of the visualizations 

themselves.

Learning the Data: The Panoply 
Machine-Learning Approach

As a Smart Data Warehouse, Panoply’s learning 

process starts when the data is ingested and the first 

query is executed. Once the analyst begins to query 

the ingested data, Panoply begins its work. This 

learning and knowledge gathering process is critical 

and contributes to better performance and enhanced 

decision-making processes within the platform. 

Panoply is designed to optimize automatically based 

upon the usage patterns of the analyst or data 

scientist initiating the queries. In the test, these 

optimizations were performed within Panoply’s 

automated platform by a proprietary set of machine 

learning algorithms, which learned the business logic 

and adjusted for optimal performance. Some of the 

automated optimizations included data compression, 

distribution key creation, and sort key creation.

Performance Testing

The importance of Panoply’s ability to learn the data 

showed its significance during the performance 

testing. The tests were designed as straight “apples-

to-apples” comparisons. To ensure comparison 

equivalency was possible, special care was taken to 

create a uniform size and composition of the Redshift 

cluster backing Panoply, and to that of the standalone 

“vanilla” Redshift cluster. The first baseline run 

column was labeled as ‘Redshift-Baseline’ or ‘Panoply-

Baseline’. Each row in the chart displayed a different 

dashboard executing one or more queries. This testing 

methodology was performed with Panoply as well as 

the vanilla Redshift. 

During the test period, three batches of data were 

run against a Panoply Smart Data Warehouse and 

an Amazon Redshift Warehouse. The performance 

was sampled in each batch with changing intervals 

to identify performance improvements. The data 

warehouse and all optimizations were cleared as each 

new batch of data was introduced into the system. 

With these testing parameters in place, Panoply 

immediately began to “learn the data” and identify 

helpful usage patterns upon initial analysis. Based 

on the patterns identified, Panoply then determined 

which optimizations to make and to what extent they 

should be implemented.

Since all optimizations are managed within Panoply, 

the platform can adapt to a variety of use cases. 

The more frequently the data is queried, the more 

deeply the platform understands the data and the 

more precisely the machine intelligence will adapt to 

improve performance.

Panoply Optimizations: Keys, 
Compression, & Queries in Data Learning

Panoply applies distribution and sort key setting, 

compression, query, and view materialization 

optimizations during its data learning process.

Distribution & Sort Keys

The distribution key is essential to optimization 

because it directly impacts performance, and defines 

how data is the spread across nodes. Panoply has 

automated the process of designating a distribution 

key based on ”learned data”.

The spread of data within a node is determined by the 

sort key. Panoply can intelligently select the correct 

column as a sort key. In Redshift, sort keys allow for 

less data scanning when the user utilizes WHERE 

clauses in a query. In Tableau, a user-defined filter 

which is  “covered” by a sort key in Redshift generally 

enhances performance significantly.

Redshift does not utilize constraints on the primary or 

foreign keys – these are informational only. Panoply, 

however, can add constraints through its internal 



processing when it is being utilized by other tools in 

their query building process.  There are two options for 

defining constraints within a Panoply database. One 

is setting them by user via Panoply UI. The other is to 

allow Panoply’s algorithm to identify fields with id/id_

pattern values. Based upon these results, Panoply will 

define the field(s) as primary keys/foreign keys (PK/FK).

Compression

Compression is an effective method of reducing 

the size of stored data. By reducing the data size, 

query performance can increase due to reductions 

in disk I/O. The more data used, the more important 

compression becomes. Redshift selects the 

compression configuration during the initial copying 

of the database, and then continues compression of 

established configuration.

Panoply also handles compression on the initial copy, 

but then continues to monitors the data over time, 

adjusting the compression configuration as needed, 

particularly after changes or introductions of new data 

segments. By periodically optimizing via compression, 

Panoply improves the overall responsiveness of the 

dataset to rendering and visualization requests.

Queries

Panoply keeps track of the user’s queries, specifically 

their usage of tables in joins and fields in ON clauses. 

Based upon this information, Panoply defines the 

distribution key and style appropriate for each table 

and generally for the database. This allows future 

queries to better leverage the distribution keys and 

more easily access data from different nodes. For 

example, a field that is often used when joining a 

certain table would be a statistically strong candidate 

for a distribution key.

In the case of query caching, Panoply can dynamically 

define queries to cache. Every query executed on top 

of Panoply goes through a proxy server. The query 

is analyzed for metadata purposes (execution time, 

row count, number of executions, etc.), and a learning 

algorithm evaluates the aggregated statistics and 

makes the decision to cache the query or remove it 

from cache. Panoply uses layers of memory throughout 

its infrastructure, allowing it to dynamically allocate 

the cached results between database storage and the 

proxy external memory.

View Materialization

Query information is combined with an analysis of 

the query patterns Panoply observes during testing 

to optimize for view materialization. Panoply takes 

advantage of both cached results and materialized 

views, and decides to cache all or a portion of the 

queries in memory based upon user statistics from 

queries. By analyzing usage, runtime and frequency, 

Panoply decides which queries or views should be 

materialized or cached. 

Panoply intelligently decides if queries are completely 

cached in memory, segregated or if an aggregated 

query is saved. In case of a segregated query, Panoply 

enabled Tableau to pull it from memory instead of 

pulling the data entirely from the data warehouse, 

which allows for a significantly faster return. 

This decision made a notable difference in query 

optimization. Aggregate results were materialized 

using the following methods:

	 •	 Materialize Views – The results of the view are 	

		  calculated and saved as tables (these are

		  refreshed every time new data enters the 		

		  tables the view depends upon).

	 •	 Materialize Queries (Cached Results) – Panoply 	

		  re-calculates frequently used queries and saves 	

		  the result as a table. By using Panoply’s proxy, 	

		  whenever the user is querying the same query 	

		  they can identify it and query the materialized 	

		  result automatically.

As datasets continue to grow and segments of data 

are repeated, optimization becomes much more 

important. Left unoptimized, growing datasets would 

cause performance slowdowns and impede data 

visualizations in Tableau. Panoply’s platform-based 

optimizations helps users avoid this issue.



The Results

Tableau Comparison – Dashboard 180M Rows

As shown in Figure 1 below, Panoply progressively 

improved in comparison to an unoptimized Redshift. 

The original normalized schema was used, so all the 

complex joins were being handled directly by Panoply. 

The organization of the tables, columns and associated 

attributes were being managed within Panoply 

while eliminating the need for data redundancy and 

increasing data integrity.

Round 1

Optimizations consisted of data compressions, 

showing a decrease in dashboard runtime and 

adjusting the Panoply performance to that of the AWS 

performance. Compression was an effective method of 

reducing the size of the stored data. By reducing the 

size of the data, the query performance had a noted 

increase due to reductions in disk I/O.

Round 2

Optimizations consisted of changing distribution style 

keys and setting sort keys and constraints, producing 

another decrease in dashboard runtimes. Panoply 

automated distribution style by systematically 

determining the best method to dispense rows of 

data based on the numbers of joins and aggregations 

between rows of data. It ensured the most effective 

constraints were implemented – ones that did 

not impede overall performance by becoming too 

burdensome.

Round 3

Optimizations consisted of query caching showing 

a larger decrease in dashboard runtimes. Panoply 

intelligently decided if queries were completely cached 

in memory, segregated or aggregated. In the case of a 

segregated query, instead of pulling the data entirely 

from the data warehouse, Panoply enabled Tableau to 

pull it from memory, which is significantly faster. This 

decision made a noticeable difference in optimization. 

Each dashboard presented a unique set of queries to 

be executed against each data warehouse. Redshift 

execution time averaged around twenty seconds. 

Panoply ranged from thirteen seconds to as high as 

eighty seconds. The largest decrease of 89% is shown 

in the Sales and Profit by State dashboard. When 

comparing all the results against a non-optimized 

vanilla Redshift in Dashboard 180M, Panoply’s average 

query execution runtime was 45% lower than the 

Redshift baseline. Comparing the runtime of the “Big 

Dashboard”, Panoply achieved a decrease of 74% in its 

final query execution run.

Figure 1: Dashboard Load Time - 180M Rows



Figure 2: Dashboard Load Time - 380M Rows

Tableau Comparison – Dashboard 380M Rows

The design of the schema played an important role 

in what happened next. Consider the results of the 

second (380M row) run. In this test, Redshift was 

optimized by using a denormalized schema to minimize 

joins. Redshift was given an “advantage” of using a 

denormalized schema while Panoply was “burdened” 

with an unoptimized complex multidimensional 

schema. In some cases, Panoply was still faster than 

(unoptimized) Redshift, but in others, Redshift was 

faster. The design of the schema contributed to 

the results. The information that Tableau collected 

was based on query results and execution for each 

dashboard.

Figure 2 above reflects the challenges of the 

optimization using a complex schema. Database design 

plays a significant role in this process. Because of 

the more complex schema (and therefore additional 

joins), Panoply’s first baseline runs are two to four 

times slower. However, by the end of the tests, and 

despite facing a more challenging database design 

Figure 3: Dashboard Load Time - 3B Rows
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than Redshift, Panoply rendered visualizations two to 

three times faster due to its ability to learn the data and 

optimize based on its own platform-based algorithms. 

Three billion rows of data was a substantial amount 

of data to process, and there were table structure and 

data layout variables that impacted load time. Tableau 

took some time to render 360k rows, with rendering 

performance dependent largely on the complexity of 

the data and the simulated lack of sophistication by 

the end user. As mentioned previously, the test was 

designed to mimic an end user situation where the 

operator was not experienced in building complex 

queries or filters and instead relies solely on the tool 

to complete the task. Most users will have filters in 

place that would return far fewer than 360k rows of 

data, decreasing both the query and rendering times. 

Although the impact of the large dataset on Tableau’s 

rendering time is a contributing factor, Panoply still 

exceeded Redshift as shown in the Big Dashboard. 

Income and Profit query improvements were small, at 

eleven percent faster than Redshift. Results displayed 

within the chart show progressive improvement in 

comparison to the unoptimized baseline of Redshift. 

The Sales and Profit by State query showed the most 

significant decrease in load time at 95.6%. The overall 

performance in Figure 3 above averages at 65% in 

comparison to the baseline of Redshift.

What We Learned

A Panoply cluster in its raw form can start off with 

performance metrics similar to a unoptimized Redshift 

cluster. Gradually, however, the proprietary Panoply 

algorithms begin to learn the data and act upon 

the information derived from the queries. As these 

processes run and the Panoply platform continues 

to learn, the result is continuous performance 

improvement. After two to three weeks of running 

dashboards, Panoply reached an optimal runtime that 

outperformed the unoptimized Redshift cluster by up 

to 90%.

 

The conclusions we draw from viewing these results 

is that data design, data configuration, and data 

management tool selection can have a marked impact 

on visualization rendering performance in Tableau. 

Panoply’s platform-based machine learning algorithms 

eliminate the difficult IT work of optimization and 

configuration, streamlining data analysis for analysts 

and data scientists and providing a faster, more agile 

database response for all Tableau users.

https://platform.panoply.io/#/signup

